博客
关于我
剑指offer之不用加减乘除做加法
阅读量:639 次
发布时间:2019-03-14

本文共 972 字,大约阅读时间需要 3 分钟。

为了求两个整数之和,而不使用+、-、*、/四则运算符,我们可以利用二进制逐位运算的原理。二进制加法中的异或操作(^)可以用来计算每一位的和,而与操作(&)可以用来计算进位。具体来说,逐位相加的结果是异或操作的结果,进位是与操作后的结果左移一位。重复这个过程,直到没有进位为止,最终的数值即为两个整数的和。

例如,对于两个数5(二进制0101)和6(二进制0110),逐位运算如下:

  • 逐位相加,进行异或操作和与操作:

    • bit1:1 ^ 0 = 1,进位bit carry1:0 ^ 1 = 0。
    • bit2:0 ^ 1 = 1,进位bit carry2:1 & 1 = 1,左移后变为10。
    • bit3:1 ^ 1 = 0,进位bit carry3:没有进位。
    • bit4:0 ^ 0 = 0,进位bit carry4:没有进位。
  • 组合结果,得到二进制1011,即十进制11。

  • 基于上述逻辑,我们可以编写如下函数:

    写一个函数,求两个整数之和,不得使用+、-、*、/四则运算符。

    思路:利用二进制逐位运算,通过异或操作求出每位的和,通过与操作和左移得到进位,最终组合得到结果。

    代码实现:

    public class Solution { public int Add(int num1, int num2) { while (num2 != 0) { int sum = num1 ^ num2; num2 = (num1 & num2) << 1; num1 = sum; } return num1; } }

    函数逐步解释如下:

  • 循环条件:当num2不等于0时,继续执行循环。
  • sum = num1 ^ num2:计算当前位的和。
  • 进位计算:使用按位与(&)和左移(<< 1)来计算进位,并将进位加入num2,继续处理。
  • 更新sum(num1):将当前位的sum存入num1,继续下一位的处理。
  • 返回结果:当没有进位时(num2 == 0),返回最终结果。
  • 该方法高效且简洁,有效避免了使用四则运算符,同时保证了函数的性能。

    转载地址:http://vogoz.baihongyu.com/

    你可能感兴趣的文章
    npm install报错,证书验证失败unable to get local issuer certificate
    查看>>
    npm run build 失败Compiler server unexpectedly exited with code: null and signal: SIGBUS
    查看>>
    npm run build报Cannot find module错误的解决方法
    查看>>
    npm run build部署到云服务器中的Nginx(图文配置)
    查看>>
    npm WARN deprecated core-js@2.6.12 core-js@<3.3 is no longer maintained and not recommended for usa
    查看>>
    npm切换到淘宝源
    查看>>
    npm前端包管理工具简介---npm工作笔记001
    查看>>
    npm和yarn清理缓存命令
    查看>>
    npm和yarn的使用对比
    查看>>
    npm报错unable to access ‘https://github.com/sohee-lee7/Squire.git/‘
    查看>>
    npm的问题:config global `--global`, `--local` are deprecated. Use `--location=global` instead 的解决办法
    查看>>
    npm错误Error: Cannot find module ‘postcss-loader‘
    查看>>
    NPOI之Excel——合并单元格、设置样式、输入公式
    查看>>
    NPOI利用多任务模式分批写入多个Excel
    查看>>
    NPOI格式设置
    查看>>
    NR,NF,FNR
    查看>>
    nrf开发笔记一开发软件
    查看>>
    NSDateFormatter的替代方法
    查看>>
    nsis 安装脚本示例(转)
    查看>>
    NSOperation基本操作
    查看>>